Issue 34, 2016

An effective way to reduce energy loss and enhance open-circuit voltage in polymer solar cells based on a diketopyrrolopyrrole polymer containing three regular alternating units

Abstract

A novel diketopyrrolopyrrole (DPP)-based conjugated polymer (PCDPP) was designed, synthesized and used as a donor material for polymer solar cells (PSCs). By increasing the planarity of polymer chains and reducing the energy loss in devices, we have simultaneously acquired a high short-circuit current (Jsc) and a large open-circuit voltage (Voc) in PSCs based on PCDPP, which is a regular alternating ternary conjugated polymer. This polymer has a medium optical band gap (1.55 eV) with low-lying HOMO and LUMO energy levels. In addition, PCDPP exhibits a very good planarity from density functional theory (DFT) calculations and forms a fibrillar network in the active layer of solar cells. Because of these integrated favourable effects, PCDPP-based photovoltaic devices exhibit a high power conversion efficiency (PCE) of 9.02% which is among the highest values reported so far for devices based on DPP-containing polymers. More importantly, the Voc of our PCDPP-based devices can reach as high as 0.86 V, which is much higher than that (<0.7 V) of high-efficiency solar cells based on other DPP polymers. These results provide a promising way to minimize the energy loss and to realize high Voc and Jsc values at the same time in devices to obtain high power conversion efficiencies.

Graphical abstract: An effective way to reduce energy loss and enhance open-circuit voltage in polymer solar cells based on a diketopyrrolopyrrole polymer containing three regular alternating units

Supplementary files

Article information

Article type
Paper
Submitted
29 Jun 2016
Accepted
28 Jul 2016
First published
10 Aug 2016

J. Mater. Chem. A, 2016,4, 13265-13270

An effective way to reduce energy loss and enhance open-circuit voltage in polymer solar cells based on a diketopyrrolopyrrole polymer containing three regular alternating units

Y. Liu, G. Li, Z. Zhang, L. Wu, J. Chen, X. Xu, X. Chen, W. Ma and Z. Bo, J. Mater. Chem. A, 2016, 4, 13265 DOI: 10.1039/C6TA05471D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements