Issue 42, 2016

Monolayer MoS2 with S vacancies from interlayer spacing expanded counterparts for highly efficient electrochemical hydrogen production

Abstract

It is challenging to prepare monolayer MoS2 with activated basal planes in a simple and efficient way. In this study, an interlayer spacing expanded counterpart, ammonia-intercalated MoS2, was obtained by a simple hydrothermal reaction of ammonium molybdate and elemental sulfur in hydrazine monohydrate solution. Then, the ammonia-intercalated MoS2 could be easily exfoliated by ultrasonication to get monolayer MoS2. Importantly, this monolayer MoS2 possessed rich S vacancies. The produced MoS2 demonstrated a proliferated active site density as well as low-loss electrical transport for efficient electrochemical hydrogen production from water. As expected, the monolayer MoS2 with S vacancies exhibited an excellent electrocatalytic hydrogen evolution reaction performance with a low overpotential (at 10 mA cm−2) of 160 mV (V vs. RHE) in acid media and a small Tafel slope of 54.9 mV dec−1. Furthermore, the catalyst displayed a good long-term stability and chemical stability during the electrochemical hydrogen production process. Computational studies prove that the S vacancies enabled the inert basal planes by introducing localized donor states into the bandgap and lowered the hydrogen adsorption free energy. This study could open new opportunities for the rational design and a better understanding of structure–property relationships of MoS2-based catalysts for water splitting or other applications.

Graphical abstract: Monolayer MoS2 with S vacancies from interlayer spacing expanded counterparts for highly efficient electrochemical hydrogen production

Supplementary files

Article information

Article type
Paper
Submitted
31 Jul 2016
Accepted
14 Sep 2016
First published
15 Sep 2016

J. Mater. Chem. A, 2016,4, 16524-16530

Monolayer MoS2 with S vacancies from interlayer spacing expanded counterparts for highly efficient electrochemical hydrogen production

Y. Xu, L. Wang, X. Liu, S. Zhang, C. Liu, D. Yan, Y. Zeng, Y. Pei, Y. Liu and S. Luo, J. Mater. Chem. A, 2016, 4, 16524 DOI: 10.1039/C6TA06534A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements