Issue 42, 2016

Concave octahedral Pd@PdPt electrocatalysts integrating core–shell, alloy and concave structures for high-efficiency oxygen reduction and hydrogen evolution reactions

Abstract

The development of bifunctional catalysts for both the hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) is crucial for facile hydrogen production via water splitting and reducing oxygen to promote electrochemical energy conversion in fuel cells. Here, we prepare a unique concave octahedral Pd@PdPt electrocatalyst, which integrates three structural types, core–shell, concave and alloy structures, using an ethylene glycol system. Scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDS) line-scan, and X-ray photoelectron spectroscopy (XPS) analyses reveal that the concave octahedral Pd core is surrounded by a PdPt alloy shell. Through some control experiments, a possible mechanism for the formation of the nanostructure is proposed. The as-prepared Pd@PdPt NCs exhibit a superior enhanced bifunctional electrocatalytic performance for both the ORR and the HER, even better than that of 20% Pt/C. When used in the ORR, the concave octahedral Pd@PdPt NCs exhibit a superior half-potential of 0.91 V (vs. RHE), a large mass activity of 0.95 A mgPt−1, and a superior stability over 1000 cycles in 0.1 M KOH. When used in the HER, these NCs present a positive onset potential of −5 mV (vs. RHE), a small Tafel slope of 38 mV dec−1, a lower overpotential of ∼39 mV at a current density of 10 mA cm−2 and a long-term durability over 4000 cycles in 0.5 M H2SO4. This study enables the design of multi-structural bifunctional electrocatalysts for the renewable energy field.

Graphical abstract: Concave octahedral Pd@PdPt electrocatalysts integrating core–shell, alloy and concave structures for high-efficiency oxygen reduction and hydrogen evolution reactions

Supplementary files

Article information

Article type
Paper
Submitted
19 Aug 2016
Accepted
26 Sep 2016
First published
27 Sep 2016

J. Mater. Chem. A, 2016,4, 16690-16697

Concave octahedral Pd@PdPt electrocatalysts integrating core–shell, alloy and concave structures for high-efficiency oxygen reduction and hydrogen evolution reactions

Y. Liu, S. Liu, Z. Che, S. Zhao, X. Sheng, M. Han and J. Bao, J. Mater. Chem. A, 2016, 4, 16690 DOI: 10.1039/C6TA07124D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements