Issue 48, 2016

Micro- and nanoscale hierarchical structure of core–shell protein microgels

Abstract

Protein nanofibrils were first discovered in the context of misfolding and neurodegenerative diseases but have recently been found in naturally occurring functional materials including algal adhesives, bacterial coatings, and even mammalian melanosomes. These physiologically beneficial roles have led to the exploration of their use as the basis for artificial protein-based functional materials for a range of applications as bioscaffolds and carrier agents. In this work, we fabricate core–shell protein microgels stabilized by protein fibrillation with hierarchical structuring on scales ranging from a few nanometers to tens of microns. With the aid of droplet microfluidics, we exploit fibrillar protein self-assembly together with the aqueous phase separation of a polysaccharide and polyethylene glycol to control the internal structure of the microgels on the micro- and nanoscales. We further elucidate the local composition, morphology, and structural characteristics of the microgels and demonstrate a potential application of core–shell protein microgels for controlling the storage and sequential release of small drug-like molecules. The controlled self-assembly of protein nanofibrils into hierarchical structures can be used in this manner to generate a class of nanomaterials with a range of potential functions and applications.

Graphical abstract: Micro- and nanoscale hierarchical structure of core–shell protein microgels

Supplementary files

Article information

Article type
Paper
Submitted
14 Oct 2016
Accepted
14 Nov 2016
First published
14 Nov 2016

J. Mater. Chem. B, 2016,4, 7989-7999

Micro- and nanoscale hierarchical structure of core–shell protein microgels

L. R. Volpatti, U. Shimanovich, F. S. Ruggeri, S. Bolisetty, T. Müller, T. O. Mason, T. C. T. Michaels, R. Mezzenga, G. Dietler and T. P. J. Knowles, J. Mater. Chem. B, 2016, 4, 7989 DOI: 10.1039/C6TB02683D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements