Issue 3, 2017

Cationic acrylate oligomers comprising amino acid mimic moieties demonstrate improved antibacterial killing efficiency

Abstract

Cu(0)-mediated polymerization was employed to synthesize a library of structurally varied cationic polymers and their application as antibacterial peptide mimics was assessed. Eight platform polymers were first synthesized with low degrees of polymerization (DP) using (2-Boc-amino)ethyl acrylate as the monomer and either ethyl α-bromoisobutyrate or dodecyl 2-bromoisobutyrate as the initiator (thus providing hydrocarbon chain termini of C2 or C12, respectively). A two-step modification strategy was then employed to generate the final sixteen-member polymer library. Specifically, an initial deprotection was employed to reveal the primary amine cationic polymers, followed by guanylation. The biocidal activity of these cationic polymers was assessed against various strains of Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae. Polymers having a short segment of guanidine units and a C12 hydrophobic terminus were shown to provide the broadest antimicrobial activity against the panel of isolates studied, with MIC values approaching those for Gram-positive targeting antibacterial peptides: daptomycin and vancomycin. The C12-terminated guanidine functional polymers were assayed against human red blood cells, and a concomitant increase in haemolysis was observed with decreasing DP. Cytotoxicity was tested against HEK293 and HepG2 cells, with the lowest DP C12-terminated polymer exhibiting minimal toxicity over the concentrations examined, except at the highest concentration. Membrane disruption was identified as the most probable mechanism of bacteria cell killing, as elucidated by membrane permeability testing against E. coli.

Graphical abstract: Cationic acrylate oligomers comprising amino acid mimic moieties demonstrate improved antibacterial killing efficiency

Supplementary files

Article information

Article type
Paper
Submitted
25 Oct 2016
Accepted
12 Dec 2016
First published
13 Dec 2016

J. Mater. Chem. B, 2017,5, 531-536

Cationic acrylate oligomers comprising amino acid mimic moieties demonstrate improved antibacterial killing efficiency

J. L. Grace, A. G. Elliott, J. X. Huang, E. K. Schneider, N. P. Truong, M. A. Cooper, J. Li, T. P. Davis, J. F. Quinn, T. Velkov and M. R. Whittaker, J. Mater. Chem. B, 2017, 5, 531 DOI: 10.1039/C6TB02787C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements