Issue 10, 2016

New family of room temperature quantum spin Hall insulators in two-dimensional germanene films

Abstract

Searching for two-dimensional (2D) group IV films with high structural stability and large-gaps is crucial for the realization of a dissipationless transport edge state using the quantum spin Hall effect (QSHE). Based on first-principles calculations, we predict that 2D germanene decorated with ethynyl-derivatives (GeC2X; X = H, F, Cl, Br, I) can be a topological insulator (TI) with a large band-gap for room-temperature applications. Both GeC2I and GeC2Br films are intrinsic TIs with a gap reaching up to 180 meV over a wide range, while GeC2H, GeC2F, and GeC2Cl transform from trivial to nontrivial phases under tensile strain. This topological characteristic can be confirmed by s–pxy band inversion, topological invariant Z2, and time-reversal symmetry protected helical edge states. Notably, the characteristic properties of edge states, such as the Fermi velocity and edge shape, can be tuned by edge modifications. Furthermore, we demonstrate that the h-BN sheet is an ideal substrate for the experimental realization of GeC2X, maintaining their nontrivial topology. Considering their higher thermo-stability, these GeC2X films may be good QSHE platforms for topological electronic device design and fabrication in spintronics.

Graphical abstract: New family of room temperature quantum spin Hall insulators in two-dimensional germanene films

Supplementary files

Article information

Article type
Paper
Submitted
13 Jan 2016
Accepted
14 Feb 2016
First published
15 Feb 2016

J. Mater. Chem. C, 2016,4, 2088-2094

New family of room temperature quantum spin Hall insulators in two-dimensional germanene films

R. Zhang, W. Ji, C. Zhang, S. Li, P. Li and P. Wang, J. Mater. Chem. C, 2016, 4, 2088 DOI: 10.1039/C6TC00160B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements