Issue 36, 2016

Periodic micro-patterned VO2 thermochromic films by mesh printing

Abstract

VO2 has garnered much attention in recent years as a promising candidate for thermochromic window applications due to rising awareness about energy conservation. However, the trade-off between improving the luminous transmittance (Tlum) and solar modulation ability (ΔTsol) limits the commercialization of VO2-based smart windows. Four major nanostructuring approaches were implemented to enhance both Tlum and ΔTsol, namely nanocomposites, nanoporous films, biomimetic moth-eye structures and anti-reflection coating (ARC) multilayers. This work demonstrates a novel approach that fabricates periodic, micro-patterned structures of VO2 using a facile screen printing method. The micro-patterned structure is able to favorably transmit visible light without sacrificing high near-infrared modulation, and the patterned film shows improved Tlum (67% vs. 60%) and ΔTsol (8.8% vs. 6.9%) compared with continuous films. By varying the thickness, periodicity and solid concentration, this approach can give a ΔTsol of 14.9% combined with a Tlum of 43.3%, which is comparable, if not superior to, some of the best reported results found using other approaches.

Graphical abstract: Periodic micro-patterned VO2 thermochromic films by mesh printing

Supplementary files

Article information

Article type
Paper
Submitted
29 Jun 2016
Accepted
11 Jul 2016
First published
19 Jul 2016
This article is Open Access
Creative Commons BY license

J. Mater. Chem. C, 2016,4, 8385-8391

Periodic micro-patterned VO2 thermochromic films by mesh printing

Q. Lu, C. Liu, N. Wang, S. Magdassi, D. Mandler and Y. Long, J. Mater. Chem. C, 2016, 4, 8385 DOI: 10.1039/C6TC02694J

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements