Issue 16, 2017

Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties

Abstract

Ti3C2Tx MXenes modified with in situ grown carbon nanotubes (CNTs) are fabricated via a simple catalytic chemical vapor deposition (CVD) process. The as-prepared Ti3C2Tx/CNT nanocomposites show that one-dimensional (1D) carbon nanotubes are uniformly distributed in the interlayers of two-dimensional (2D) Ti3C2Tx MXene flakes. Compared with the pristine Ti3C2Tx MXenes, the hierarchical sandwich microstructure makes a contribution to the excellent electromagnetic wave absorption performance in the frequency range of 2–18 GHz, including higher absorption intensity (the minimum reflection coefficient reaches −52.9 dB, ∼99.999% absorption), broader effective absorption bandwidth (4.46 GHz), lower filler loading (35 wt%) and thinner thickness (only 1.55 mm). In addition, with the adjustment of thickness from 1.55 to 5 mm, the effective absorption bandwidth can reach up to 14.54 GHz (3.46–18 GHz). Different absorption mechanisms mainly based on polarization behaviors and conductivity loss are discussed. This work not only proposes the design of a novel electromagnetic wave absorber, but also provides an effective route for extending further the applications of 2D MXene materials in the field of electromagnetic wave absorption.

Graphical abstract: Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties

Article information

Article type
Paper
Submitted
02 Dec 2016
Accepted
27 Mar 2017
First published
28 Mar 2017

J. Mater. Chem. C, 2017,5, 4068-4074

Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties

X. Li, X. Yin, M. Han, C. Song, H. Xu, Z. Hou, L. Zhang and L. Cheng, J. Mater. Chem. C, 2017, 5, 4068 DOI: 10.1039/C6TC05226F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements