Issue 12, 2017

Impact of the complementary electronic nature of C–X and M–X halogens and intramolecular X⋯O interaction on supramolecular assemblies of Zn(ii) complexes of o-halophenyl substituted hydrazides

Abstract

The disparity in the electronic nature of organic (C–X) and inorganic (M–X) halogens in a supramolecular context has been demonstrated herein. Metal complexes [Zn(hyd-X)Cl2nDMF of three o-halophenyl substituted hydrazide based ligands hyd-X (hyd = hydrazide, X = F, Cl and Br) have been synthesized and characterized by single crystal XRD. The C–X halogen atom in these complexes is involved in either intramolecular X⋯O interaction (when X = Cl/Br) or intramolecular N–H⋯X (when X = F) hydrogen bonding. Supramolecular networks propagated via intermolecular C–X⋯N halogen bonds and N–H⋯X(M) hydrogen bonds are observed in crystal structures of the complexes. Intramolecular X⋯O interaction and intramolecular N–H⋯F hydrogen bonds exert decisive roles in locking the molecular conformation of these compounds. DFT, AIM and NBO studies have been employed to acquire quantitative accounts of the halogen mediated non-covalent interactions.

Graphical abstract: Impact of the complementary electronic nature of C–X and M–X halogens and intramolecular X⋯O interaction on supramolecular assemblies of Zn(ii) complexes of o-halophenyl substituted hydrazides

Supplementary files

Article information

Article type
Paper
Submitted
10 Jan 2017
Accepted
14 Feb 2017
First published
14 Feb 2017

CrystEngComm, 2017,19, 1607-1619

Impact of the complementary electronic nature of C–X and M–X halogens and intramolecular X⋯O interaction on supramolecular assemblies of Zn(II) complexes of o-halophenyl substituted hydrazides

A. Mandal, B. K. Patel, R. Shukla and D. Chopra, CrystEngComm, 2017, 19, 1607 DOI: 10.1039/C7CE00060J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements