Issue 27, 2017

Inelastic neutron scattering study of reline: shedding light on the hydrogen bonding network of deep eutectic solvents

Abstract

The solids choline chloride and urea, mixed in a 1 : 2 molar proportion, form the iconic deep eutectic solvent “Reline”. A combination of computational and vibrational spectroscopy tools, including inelastic neutron scattering (INS), have been used to probe intermolecular interactions in the eutectic mixture. Reline's experimental spectra were estimated using discrete and periodic ab initio calculations of a molecular aggregate with two choline chloride and four urea units. This is the minimum size required to achieve satisfactory agreement with experiment, as smaller clusters cannot represent all of reline's significant intermolecular interactions. The INS spectrum of reline, compared with that of pure choline chloride, reveals a displacement of chloride anions away from their preferred positions on top of choline's methyl groups, whose torsional movement becomes less hindered in the mixture. Urea, which adopts a planar (sp2) shape in the crystal, becomes non-planar (sp3) in reline, a feature herein discussed for the first time. In reline, urea molecules form a wide range of hydrogen bonds, from soft contacts to stronger associations, the latter being responsible for the deviation from ideality. The chloride's interactions with choline are largely conserved at the hydroxyl end while becoming weaker at the cationic headgroup. The interplay of soft and strong interactions confers flexibility to the newly formed hydrogen-bond network and allows the ensemble to remain liquid at room temperature.

Graphical abstract: Inelastic neutron scattering study of reline: shedding light on the hydrogen bonding network of deep eutectic solvents

Supplementary files

Article information

Article type
Paper
Submitted
27 Feb 2017
Accepted
23 Jun 2017
First published
23 Jun 2017

Phys. Chem. Chem. Phys., 2017,19, 17998-18009

Inelastic neutron scattering study of reline: shedding light on the hydrogen bonding network of deep eutectic solvents

C. F. Araujo, J. A. P. Coutinho, M. M. Nolasco, S. F. Parker, P. J. A. Ribeiro-Claro, S. Rudić, B. I. G. Soares and P. D. Vaz, Phys. Chem. Chem. Phys., 2017, 19, 17998 DOI: 10.1039/C7CP01286A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements