Issue 30, 2017

Vesicle aggregates as a model for primitive cellular assemblies

Abstract

Primitive cell models help to understand the role that compartmentalization plays in origin of life scenarios. Here we present a combined experimental and modeling approach towards the construction of simple model systems for primitive cellular assemblies. Charged lipid vesicles aggregate in the presence of oppositely charged biopolymers, such as nucleic acids or polypeptides. Based on zeta potential measurements, dynamic light scattering and cryo-transmission electron-microscopy, we have characterized the behavior of empty and ferritin-filled large unilamellar POPC vesicles, doped with different amounts of cationic (DDAB, CTAB) and anionic (sodium oleate) surfactants, and their aggregation upon the addition of anionic (tRNA, poly-L-glutamic acid) and cationic (poly-L-arginine) biopolymers, respectively. The experimental results are rationalized by a phenomenological modeling approach that predicts the average size of the vesicle aggregates as function of the amount of added biopolymers. In addition, we discuss the mechanism of vesicle aggregation induced by oppositely charged biopolymers. Our study complements previous reports about the formation of giant vesicle clusters and thus provides a general vista on primitive cell systems, based on the association of vesicles into compartmentalized aggregates.

Graphical abstract: Vesicle aggregates as a model for primitive cellular assemblies

Article information

Article type
Paper
Submitted
04 Jun 2017
Accepted
10 Jul 2017
First published
12 Jul 2017

Phys. Chem. Chem. Phys., 2017,19, 20082-20092

Vesicle aggregates as a model for primitive cellular assemblies

T. P. de Souza, G. V. Bossa, P. Stano, F. Steiniger, S. May, P. L. Luisi and A. Fahr, Phys. Chem. Chem. Phys., 2017, 19, 20082 DOI: 10.1039/C7CP03751A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements