Issue 33, 2017

Stability of dye-sensitized solar cells under extended thermal stress

Abstract

In the last few decades, dye-sensitized solar cell (DSC) technology has been demonstrated to be a promising candidate for low cost energy production due to cost-effective materials and fabrication processes. Arguably, DSC stability is the biggest challenge for making this technology appealing for industrial exploitation. This work provides further insight into the stability of DSCs by considering specific dye–electrolyte systems characterized by Raman and impedance spectroscopy analysis. In particular, two ruthenium-based dyes, Z907 and Ru505, and two commercially available electrolytes, namely, the high stability electrolyte (HSE) and solvent-free Livion 12 (L-12), were tested. After 4700 h of thermal stress at 85 °C, the least stable device composed of Z907/HSE showed an efficiency degradation rate of ∼14%/1000 h, while the Ru505/L-12 system retained 96% of its initial efficiency by losing ∼1% each 1000 h. The present results show a viable route to stabilize the DSC technology under prolonged annealing conditions complying with the IEC standard requirements.

Graphical abstract: Stability of dye-sensitized solar cells under extended thermal stress

Supplementary files

Article information

Article type
Paper
Submitted
08 Jul 2017
Accepted
28 Jul 2017
First published
28 Jul 2017

Phys. Chem. Chem. Phys., 2017,19, 22546-22554

Stability of dye-sensitized solar cells under extended thermal stress

S. K. Yadav, S. Ravishankar, S. Pescetelli, A. Agresti, F. Fabregat-Santiago and A. Di Carlo, Phys. Chem. Chem. Phys., 2017, 19, 22546 DOI: 10.1039/C7CP04598K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements