Issue 43, 2017

Pure zero-dimensional Cs4PbBr6 single crystal rhombohedral microdisks with high luminescence and stability

Abstract

Zero-dimensional (0D) perovskite Cs4PbBr6 has been speculated to be an efficient solid-state emitter, exhibiting strong luminescense on achieving quantum confinement. Although several groups have reported strong green luminescence from Cs4PbBr6 powders and nanocrystals, doubts that the origin of luminescence comes from Cs4PbBr6 itself or CsPbBr3 impurities have been a point of controversy in recent investigations. Herein, we developed a facile one-step solution self-assembly method to synthesize pure zero-dimensional rhombohedral Cs4PbBr6 micro-disks (MDs) with a high PLQY of 52% ± 5% and photoluminescence full-width at half maximum (FWHM) of 16.8 nm. The obtained rhombohedral MDs were high quality single-crystalline as demonstrated by XRD and SAED patterns. We demonstrated that Cs4PbBr6 MDs and CsPbBr3 MDs were phase-separated from each other and the strong green emission comes from Cs4PbBr6. Power and temperature dependence spectra evidenced that the observed strong green luminescence of pure Cs4PbBr6 MDs originated from direct exciton recombination in the isolated octahedra with a large binding energy of 303.9 meV. Significantly, isolated PbBr64− octahedra separated by a Cs+ ion insert in the crystal lattice is beneficial to maintaining the structural stability, depicting superior thermal and anion exchange stability. Our study provides an efficient approach to obtain high quality single-crystalline Cs4PbBr6 MDs with highly efficient luminescence and stability for further optoelectronic applications.

Graphical abstract: Pure zero-dimensional Cs4PbBr6 single crystal rhombohedral microdisks with high luminescence and stability

Supplementary files

Article information

Article type
Paper
Submitted
07 Sep 2017
Accepted
05 Oct 2017
First published
05 Oct 2017

Phys. Chem. Chem. Phys., 2017,19, 29092-29098

Pure zero-dimensional Cs4PbBr6 single crystal rhombohedral microdisks with high luminescence and stability

H. Zhang, Q. Liao, Y. Wu, J. Chen, Q. Gao and H. Fu, Phys. Chem. Chem. Phys., 2017, 19, 29092 DOI: 10.1039/C7CP06097A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements