Issue 7, 2018

Imaging the chemical activity of single nanoparticles with optical microscopy

Abstract

Nanomaterials exhibit structural and functional heterogeneity among individual nanoparticles, thus requiring a capability to study single nanoparticles. While electron microscopes often provide static images of their chemical composition, morphology and structure, imaging the chemical activity of single nanoparticles is highly desirable for exploring the structure–activity relationship via a bottom-up strategy, to understand their microscopic reaction mechanisms and kinetics, and to identify a minority subpopulation with extraordinary activity. Recently, various optical microscopes have been emerging as powerful techniques towards this goal, owing to their non-invasive nature, excellent sensitivity, diversified spectroscopic principles and sufficient spatial and temporal resolution. In this review, we first introduce the motivational concept and the strength of using optical microscopy to study the chemical activity of single nanoparticles. In the second section, five types of commonly used optical microscopy, fluorescence microscopy, dark-field microscopy, surface plasmon resonance microscopy, Raman microscopy and photothermal microscopy are described, with an emphasis on their applicable nanomaterials and mechanisms for application. Recent achievements of these techniques in nanosensing, nanoelectrochemistry and nanocatalysis are surveyed and summarized in the subsequent sections, respectively. We finally conclude with our perspective on the remaining challenges and the future trends in this field.

Graphical abstract: Imaging the chemical activity of single nanoparticles with optical microscopy

Article information

Article type
Review Article
Submitted
01 Jan 2018
First published
15 Mar 2018

Chem. Soc. Rev., 2018,47, 2485-2508

Imaging the chemical activity of single nanoparticles with optical microscopy

W. Wang, Chem. Soc. Rev., 2018, 47, 2485 DOI: 10.1039/C7CS00451F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements