Issue 12, 2018

The reaction mechanism and selectivity of acetylene hydrogenation over Ni–Ga intermetallic compound catalysts: a density functional theory study

Abstract

Intermetallic compounds (IMCs) have shown excellent catalytic performance toward the selective hydrogenation of acetylene, but the theoretical understanding on this reaction over Ni-based IMCs is rather limited. In this work, the adsorptions of the C2 species, Bader charge, projected density of states (PDOS) and the reaction pathways were calculated by the density functional theory (DFT) method to investigate the mechanism and selectivity for the acetylene hydrogenation on the (111) surface of NinGa (n = 1, 3) IMCs, with a comparative study on the pristine Ni(111) surface. The results indicate that the adsorption energy of acetylene increased along with the Ni/Ga ratio, therefore a feasible acetylene adsorption on the Ga-rich surface guaranteed a low effective barrier, leading to the best activity for the NiGa(111) surface among three surfaces. Bader charge analysis shows that electrons transferred from Ga atoms to Ni atoms and further delivered to C2 species, decreasing the adsorption capacity of C2 species on NiGa(111) in comparison with those on Ni(111) and Ni3Ga(111). The reaction pathway of acetylene hydrogenation to ethylene via vinyl or even over-hydrogenation to ethane via ethyl is more favorable than the pathway involving the ethylidene intermediate on all surfaces. Moreover, the ethylene selectivity has a positive correlation with the gallium content by comparing the desorption barrier with the hydrogenation barrier of ethylene, thus the NiGa(111) surface also exhibits the best selectivity. Therefore, the NiGa(111) surface demonstrates to be an excellent reaction facet for the semihydrogenation of acetylene, which agreed with the experimental findings, and would provide helpful instructions for designing and preparing highly-selective and noble-substitute catalysts of alkyne semihydrogenation.

Graphical abstract: The reaction mechanism and selectivity of acetylene hydrogenation over Ni–Ga intermetallic compound catalysts: a density functional theory study

Supplementary files

Article information

Article type
Paper
Submitted
14 Dec 2017
Accepted
05 Feb 2018
First published
06 Feb 2018

Dalton Trans., 2018,47, 4198-4208

The reaction mechanism and selectivity of acetylene hydrogenation over Ni–Ga intermetallic compound catalysts: a density functional theory study

D. Rao, S. Zhang, C. Li, Y. Chen, M. Pu, H. Yan and M. Wei, Dalton Trans., 2018, 47, 4198 DOI: 10.1039/C7DT04726F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements