Issue 4, 2017

“Protrusions” or “holes” in graphene: which is the better choice for sodium ion storage?

Abstract

The main challenge associated with sodium-ion battery (SIB) anodes is a search for novel candidate materials with high capacity and excellent rate capability. The most commonly used and effective route for graphene-based anode design is the introduction of in-plane “hole” defects via nitrogen-doping; this creates a spacious reservoir for storing more energy. Inspired by mountains in nature, herein, we propose another way – the introduction of blistering in graphene instead of making “holes”; this facilitates adsorbing/inserting more Na+ ions. In order to properly answer the key question: ““protrusions” or “holes” in graphene, which is better for sodium ion storage?”, two types of anode materials with a similar doping level were designed: a phosphorus-doped graphene (GP, with protrusions) and a nitrogen-doped graphene (GN, with holes). As compared with GN, the GP anode perfectly satisfies all the desired criteria: it reveals an ultrahigh capacity (374 mA h g−1 after 120 cycles at 25 mA g−1) comparable to the best graphite anodes in a standard Li-ion battery (∼372 mA h g−1), and exhibits an excellent rate capability (210 mA h g−1 at 500 mA g−1). In situ transmission electron microscopy (TEM) experiments and density functional theory (DFT) calculations were utilized to uncover the origin of the enhanced electrochemical activity of “protrusions” compared to “holes” in SIBs, down to the atomic scale. The introduction of protrusions through P-doping into graphene is envisaged to be a novel effective way to enhance the capacity and rate performance of SIBs.

Graphical abstract: “Protrusions” or “holes” in graphene: which is the better choice for sodium ion storage?

Supplementary files

Article information

Article type
Paper
Submitted
03 Feb 2017
Accepted
15 Mar 2017
First published
15 Mar 2017

Energy Environ. Sci., 2017,10, 979-986

“Protrusions” or “holes” in graphene: which is the better choice for sodium ion storage?

Y. Yang, D. Tang, C. Zhang, Y. Zhang, Q. Liang, S. Chen, Q. Weng, M. Zhou, Y. Xue, J. Liu, J. Wu, Q. H. Cui, C. Lian, G. Hou, F. Yuan, Y. Bando, D. Golberg and X. Wang, Energy Environ. Sci., 2017, 10, 979 DOI: 10.1039/C7EE00329C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements