Issue 5, 2017

Extrinsic ion migration in perovskite solar cells

Abstract

The migration of intrinsic ions (e.g., MA+, Pb2+, I) in organic–inorganic hybrid perovskites has received significant attention with respect to the critical roles of these ions in the hysteresis and degradation in perovskite solar cells (PSCs). Here, we demonstrate that extrinsic ions (e.g., Li+, H+, Na+), when used in the contact layers in PSCs, can migrate across the perovskite layer and strongly impact PSC operation. In a TiO2/perovskite/spiro-OMeTAD-based PSC, Li+-ion migration from spiro-OMeTAD to the perovskite and TiO2 layer is illustrated by time-of-flight secondary-ion mass spectrometry. The movement of Li+ ions in PSCs plays an important role in modulating the solar cell performance, tuning TiO2 carrier-extraction properties, and affecting hysteresis in PSCs. The influence of Li+-ion migration was investigated using time-resolved photoluminescence, Kelvin probe force microscopy, and external quantum efficiency spectra. Other extrinsic ions such as H+ and Na+ also show a clear impact on the performance and hysteresis in PSCs. Understanding the impacts of extrinsic ions in perovskite-based devices could lead to new material and device designs to further advance perovskite technology for various applications.

Graphical abstract: Extrinsic ion migration in perovskite solar cells

Supplementary files

Article information

Article type
Paper
Submitted
07 Feb 2017
Accepted
27 Mar 2017
First published
10 Apr 2017

Energy Environ. Sci., 2017,10, 1234-1242

Extrinsic ion migration in perovskite solar cells

Z. Li, C. Xiao, Y. Yang, S. P. Harvey, D. H. Kim, J. A. Christians, M. Yang, P. Schulz, S. U. Nanayakkara, C. Jiang, J. M. Luther, J. J. Berry, M. C. Beard, M. M. Al-Jassim and K. Zhu, Energy Environ. Sci., 2017, 10, 1234 DOI: 10.1039/C7EE00358G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements