Issue 1, 2018

Na11Sn2PS12: a new solid state sodium superionic conductor

Abstract

We report a new sodium superionic conductor, Na11Sn2PS12, that crystallizes in an unprecedented three-dimensional structure type and exhibits an ionic conductivity of 1.4 mS cm−1, with a very low activation energy barrier for Na-ion mobility of 0.25 eV. A combination of structural elucidation via single crystal X-ray diffraction and ab initio molecular dynamics simulations show that Na+-ion conduction pathways flow through equi-energetic sodium–sulfur octahedra interconnected by partial vacancy cross-over sites in all crystallographic dimensions, providing an understanding of the underlying isotropic 3D fast-ion conduction in this material.

Graphical abstract: Na11Sn2PS12: a new solid state sodium superionic conductor

Supplementary files

Article information

Article type
Communication
Submitted
27 Oct 2017
Accepted
04 Dec 2017
First published
04 Dec 2017

Energy Environ. Sci., 2018,11, 87-93

Na11Sn2PS12: a new solid state sodium superionic conductor

Z. Zhang, E. Ramos, F. Lalère, A. Assoud, K. Kaup, P. Hartman and L. F. Nazar, Energy Environ. Sci., 2018, 11, 87 DOI: 10.1039/C7EE03083E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements