Issue 15, 2017

Production of levoglucosenone and 5-hydroxymethylfurfural from cellulose in polar aprotic solvent–water mixtures

Abstract

We demonstrate a process to produce levoglucosenone (LGO) and 5-hydroxymethylfurfural (HMF) from cellulose in up to 65% carbon yield using sulfuric acid as catalyst and a solvent consisting of a mixture of tetrahydrofuran (THF) with water. In pure THF, LGO is the major product of cellulose dehydration, passing through levoglucosan as an intermediate. Increasing the water content (up to 5 wt%) results in HMF as the major product. HMF is formed both by glucose dehydration and direct dehydration of LGA. The maximum combined yield of LGO and HMF (∼65 carbon%) is achieved in the presence of 1–2.5 wt% H2O, such that comparable amounts of these two co-products are formed. THF gave the highest total yields of LGO and HMF among the solvents investigated in this study (i.e., THF, diglyme, tetraglyme, gamma-valerolactone (GVL), cyclopentyl methyl ether (CPME), 1,4-dioxane, and dimethyl sulfoxide (DMSO)). Furthermore, the rate of LGO and HMF degradation in THF was lower than in the other solvents. LGO/HMF yields increased with increased strength of the acid catalyst (H2SO4 > H3PO4 > HCOOH), and HMF was produced more selectively than LGO in the presence of hydrochloric acid. Techno-economic analysis for LGO and HMF production from cellulose shows that the lowest LGO/HMF production costs are less than $3.00 per kg and occur at a cellulose loading and water content of 2–3% and 1.5–2.5% respectively.

Graphical abstract: Production of levoglucosenone and 5-hydroxymethylfurfural from cellulose in polar aprotic solvent–water mixtures

Supplementary files

Article information

Article type
Paper
Submitted
09 Jun 2017
Accepted
22 Jun 2017
First published
22 Jun 2017

Green Chem., 2017,19, 3642-3653

Production of levoglucosenone and 5-hydroxymethylfurfural from cellulose in polar aprotic solvent–water mixtures

J. He, M. Liu, K. Huang, T. W. Walker, C. T. Maravelias, J. A. Dumesic and G. W. Huber, Green Chem., 2017, 19, 3642 DOI: 10.1039/C7GC01688C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements