Issue 23, 2017

Employing shells to eliminate concentration quenching in photonic upconversion nanostructure

Abstract

It is generally accepted that a lanthanide ions based upconversion material follows an activator low doping strategy (normally <3 mol%), because of the restriction of the harmful concentration quenching effect. Here, we demonstrate that this limitation can be broken in nanostructures. Simply by using an inert shell coating strategy, the concentration quenching effect for the activator (Er3+) could be eliminated and highly efficient upconversion luminescence realized in the activator fully doped nanostructure, e.g. NaErF4@NaYF4. More importantly, this novel nanostructure achieves some long-cherished desires, such as multiple-band co-excitation (∼800 nm, ∼980 nm and ∼1530 nm) and monochromic red emission. Proof-of-concept experiments are presented of the potential benefit of this structure in solar cells and anti-counterfeiting. This nanostructure offers new possibilities in realizing high upconversion emission and novel functionalities of lanthanide based nanomaterials.

Graphical abstract: Employing shells to eliminate concentration quenching in photonic upconversion nanostructure

Supplementary files

Article information

Article type
Paper
Submitted
25 Feb 2017
Accepted
21 May 2017
First published
23 May 2017

Nanoscale, 2017,9, 7941-7946

Employing shells to eliminate concentration quenching in photonic upconversion nanostructure

J. Zuo, Q. Li, B. Xue, C. Li, Y. Chang, Y. Zhang, X. Liu, L. Tu, H. Zhang and X. Kong, Nanoscale, 2017, 9, 7941 DOI: 10.1039/C7NR01403A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements