Issue 25, 2017

Five-nanometer ZnSn2O4:Cr,Eu ultra-small nanoparticles as new near infrared-emitting persistent luminescent nanoprobes for cellular and deep tissue imaging at 800 nm

Abstract

Until now, the afterglow emissions of most developed near infrared (NIR)-emitting persistent luminescent nanoparticles (NPLNPs) were located at approximately 700 nm, at the edge of the first tissue transparency window (from 650 to 900 nm), which resulted in relatively low tissue penetration and signal-to-noise ratio (SNR) for in vivo imaging. Herein, 5 nm ZnSn2O4:Cr,Eu (ZSO) NPLNPs with NIR afterglow emission at 800 nm are synthesized via a direct aqueous-phase synthesis method. The longer NIR afterglow emission of ZSO NPLNPs can easily penetrate approximately 3 cm of pork tissue. Furthermore, even though the backbones blocked part of the NIR afterglow light, high SNR (25.5) in vivo images of the backs of mice can be observed and can be maintained for more than 15 min. The ZSO nanoprobes conjugated with folic acid exhibited excellent in vitro and in vivo tumor targeting capacity, which was advantageous for accurate tumor diagnosis. More importantly, the ZSO NPLNPs can be re-excited in situ and in vivo using NIR light to realize renewable near-infrared persistent luminescence in vivo, which was helpful for very long term and higher SNR in vitro and in vivo imaging.

Graphical abstract: Five-nanometer ZnSn2O4:Cr,Eu ultra-small nanoparticles as new near infrared-emitting persistent luminescent nanoprobes for cellular and deep tissue imaging at 800 nm

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
07 Apr 2017
Accepted
18 May 2017
First published
19 May 2017

Nanoscale, 2017,9, 8631-8638

Five-nanometer ZnSn2O4:Cr,Eu ultra-small nanoparticles as new near infrared-emitting persistent luminescent nanoprobes for cellular and deep tissue imaging at 800 nm

J. Li, J. Shi, C. Wang, P. Li, Z. Yu and H. Zhang, Nanoscale, 2017, 9, 8631 DOI: 10.1039/C7NR02468A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements