Issue 37, 2017

Plasmonic color metasurfaces fabricated by a high speed roll-to-roll method

Abstract

Lab-scale plasmonic color printing using nano-structured and subsequently metallized surfaces have been demonstrated to provide vivid colors. However, upscaling these structures for large area manufacturing is extremely challenging due to the requirement of nanometer precision of metal thickness. In this study, we have investigated a plasmonic color meta-surface design that can be easily upscaled. We have demonstrated the feasibility of fabrication of these plasmonic color surfaces by a high-speed roll-to-roll method, comprising roll-to-roll extrusion coating at 10 m min−1 creating a polymer foil having 100 nm deep pits of varying sub-wavelength diameter and pitch length. Subsequently this polymer foil was metallized and coated also by high-speed roll-to-roll methods. The perceived colors have high tolerance towards the thickness of the metal layer, when this thickness exceeds the depths of the pits, which enables the robust high-speed fabrication. This finding can pave the way for plasmonic meta-surfaces to be implemented in a broader range of applications such as printing, memory, surface enhanced Raman scattering (SERS), biosensors, flexible displays, photovoltaics, security, and product branding.

Graphical abstract: Plasmonic color metasurfaces fabricated by a high speed roll-to-roll method

Supplementary files

Article information

Article type
Paper
Submitted
26 Jul 2017
Accepted
08 Sep 2017
First published
08 Sep 2017

Nanoscale, 2017,9, 14280-14287

Plasmonic color metasurfaces fabricated by a high speed roll-to-roll method

S. Murthy, H. Pranov, N. A. Feidenhans'l, J. S. Madsen, P. E. Hansen, H. C. Pedersen and R. Taboryski, Nanoscale, 2017, 9, 14280 DOI: 10.1039/C7NR05498J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements