Issue 48, 2017

Fast and scalable synthesis of uniform zirconium-, hafnium-based metal–organic framework nanocrystals

Abstract

Metal–organic frameworks based on zirconium or hafnium possess tantalizing commercial prospects due to their high stability but require a long reaction time to form crystals. The fast synthesis of uniform Zr-, Hf-MOF nanocrystals at scale is of key importance in the potential commercial application of MOFs. In this work, we have developed a versatile strategy through controlling the hydrolysis and nucleation of metal salts in the presence of acetic acid and water; up to 24 grams of UiO-66-NH2 nanocrystals with a uniform octahedron could be synthesized within 15 minutes using a one step method. The current synthetic strategy could be extended to other Zr-, Hf-MOF nanocrystals [UiO-66-Fast, UiO-66-(OH)2-Fast, UiO-66-2,6-NDC-Fast, UiO-67-Fast, BUT-12-Fast, PCN-222-Ni-Fast, PCN-222-Co-Fast, Hf-UiO-66-Fast, Hf-UiO-66-NH2-Fast, Hf-UiO-66-(OH)2-Fast, Hf-UiO-66-2,6-NDC-Fast and Hf-BUT-12-Fast]. Significantly, when noble metal nanoparticles (NPs) are introduced into MOF precursors, NPs encapsulated in MOFs with excellent dispersion have also been obtained and show outstanding performance in catalysis. This facile procedure is expected to pave the way to expand the commercial applications of MOFs.

Graphical abstract: Fast and scalable synthesis of uniform zirconium-, hafnium-based metal–organic framework nanocrystals

Supplementary files

Article information

Article type
Paper
Submitted
23 Aug 2017
Accepted
09 Nov 2017
First published
09 Nov 2017

Nanoscale, 2017,9, 19209-19215

Fast and scalable synthesis of uniform zirconium-, hafnium-based metal–organic framework nanocrystals

T. He, X. Xu, B. Ni, H. Wang, Y. Long, W. Hu and X. Wang, Nanoscale, 2017, 9, 19209 DOI: 10.1039/C7NR06274E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements