Issue 17, 2018

Resolving the optical anisotropy of low-symmetry 2D materials

Abstract

Optical anisotropy is one of the most fundamental physical characteristics of emerging low-symmetry two-dimensional (2D) materials. It provides abundant structural information and is crucial for creating diverse nanoscale devices. Here, we have proposed an azimuth-resolved microscopic approach to directly resolve the normalized optical difference along two orthogonal directions at normal incidence. The differential principle ensures that the approach is only sensitive to anisotropic samples and immune to isotropic materials. We studied the optical anisotropy of bare and encapsulated black phosphorus (BP) and unveiled the interference effect on optical anisotropy, which is critical for practical applications in optical and optoelectronic devices. A multi-phase model based on the scattering matrix method was developed to account for the interference effect and then the crystallographic directions were unambiguously determined. Our result also suggests that the optical anisotropy is a probe to measure the thickness with monolayer resolution. Furthermore, the optical anisotropy of rhenium disulfide (ReS2), another class of anisotropic 2D materials, with a 1T distorted crystal structure, was investigated, which demonstrates that our approach is suitable for other anisotropic 2D materials. This technique is ideal for optical anisotropy characterization and will inspire future efforts in BP and related anisotropic 2D nanomaterials for engineering new conceptual nanodevices.

Graphical abstract: Resolving the optical anisotropy of low-symmetry 2D materials

Supplementary files

Article information

Article type
Paper
Submitted
10 Dec 2017
Accepted
26 Mar 2018
First published
27 Mar 2018

Nanoscale, 2018,10, 8329-8337

Resolving the optical anisotropy of low-symmetry 2D materials

W. Shen, C. Hu, J. Tao, J. Liu, S. Fan, Y. Wei, C. An, J. Chen, S. Wu, Y. Li, J. Liu, D. Zhang, L. Sun and X. Hu, Nanoscale, 2018, 10, 8329 DOI: 10.1039/C7NR09173G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements