Issue 30, 2017

Synthesis of silver-anchored polyaniline–chitosan magnetic nanocomposite: a smart system for catalysis

Abstract

A simple route was employed for the fabrication of a polyaniline (PANI)–chitosan (CS)–magnetite (Fe3O4) nanocomposite (PANI–CS–Fe3O4) via the in situ polymerization of aniline in the presence of CS using anhydrous iron(III) chloride as an oxidizing agent. The magnetic character of the nanocomposite results from the presence of iron oxide nanoparticles, which were formed as side products during the synthesis of the PANI–CS nanocomposite. The synthesized PANI–CS–Fe3O4 nanocomposite was fully characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), energy dispersive X-ray (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). The reduction of silver nitrate by the synthesized nanocomposite enables the anchoring of silver (Ag) nanoparticles onto its surface. The catalytic properties of the Ag-decorated nanocomposite (Ag@PANI–CS–Fe3O4) toward the reduction of 4-nitrophenol was investigated using sodium borohydride as a reducing agent.

Graphical abstract: Synthesis of silver-anchored polyaniline–chitosan magnetic nanocomposite: a smart system for catalysis

Article information

Article type
Paper
Submitted
02 Mar 2017
Accepted
22 Mar 2017
First published
28 Mar 2017
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2017,7, 18553-18560

Synthesis of silver-anchored polyaniline–chitosan magnetic nanocomposite: a smart system for catalysis

M. M. Ayad, W. A. Amer, M. G. Kotp, I. M. Minisy, A. F. Rehab, D. Kopecký and P. Fitl, RSC Adv., 2017, 7, 18553 DOI: 10.1039/C7RA02575K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements