Issue 57, 2017, Issue in Progress

Graphene oxide–metal nanocomposites for cancer biomarker detection

Abstract

We report a universal protocol for the in situ bioinspired green synthesis of metal (Pd, Pt, Ag and Au) nanoparticles (mNPs) on simultaneously reduced graphene oxide (rGO) sheets using a black pepper extract (BPE) for quantification and kinetic analysis of epidermal growth factor receptor (ErbB2) for application to breast cancer diagnostics. The phytochemicals present in BPE were found to assist the reduction, stabilization, and surface addition of mNPs onto rGO sheets. The antioxidants present in the BPE assist the formation of a “green corona” on the surface of derived G-mNPs@rGO (G-Pd@rGO, G-Pt@rGO, G-Ag@rGO, and G-Au@rGO) sheets as corroborated by DLS and FT-IR experiments. These bioinspired derivatives provided biocompatible surfaces, resulting in higher cell viability compared to that of chemically derived composites, C-mNPs@rGO (C-Pd@rGO, C-Pt@rGO, C-Ag@rGO, and C-Au@rGO). Toxicity was found to be drastically reduced for green-corona assisted derivatives of GO due to strong antioxidant properties of the phytochemicals present in BPE. In addition, a comparative analytical study of the quantification and kinetics of breast cancer biomarkers using both G-mNPs@rGO and C-mNPs@rGO nanocomposites was carried out. The G-mNPs@rGO nanosheets can be employed for ultrasensitive detection of ErbB2 concentration from 1.0 fM to 0.5 μM.

Graphical abstract: Graphene oxide–metal nanocomposites for cancer biomarker detection

Supplementary files

Article information

Article type
Paper
Submitted
15 May 2017
Accepted
05 Jul 2017
First published
19 Jul 2017
This article is Open Access
Creative Commons BY license

RSC Adv., 2017,7, 35982-35991

Graphene oxide–metal nanocomposites for cancer biomarker detection

Md. A. Ali, C. Singh, S. Srivastava, P. Admane, V. V. Agrawal, G. Sumana, R. John, A. Panda, L. Dong and B. D. Malhotra, RSC Adv., 2017, 7, 35982 DOI: 10.1039/C7RA05491B

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements