Issue 89, 2017

Improvement in the hydrogen storage performance of the as-milled Sm–Mg alloys using MoS2 nano-particle catalysts

Abstract

The effects of the addition of MoS2 catalyst on the microstructure and hydrogen storage behavior of the as-milled Sm5Mg41 alloys were investigated in this study. The Sm5Mg41 + x wt% MoS2 (x = 0, 5, and 10) alloys were prepared by milling MoS2 powders (particle size ≤ 40 nm) and the mechanically ground as-cast Sm5Mg41 alloy powders (particle size ≤ 75 μm) in an argon atmosphere for 5 h. The results demonstrate that the as-milled alloys are composed of Sm5Mg41 and SmMg3 phases and milling refines the crystal grains. The MgH2 and Sm3H7 phases appear after hydrogenation, while the Mg and Sm3H7 phases are formed after dehydrogenation. MoS2 nano-particles are embedded in the alloy surface, which is nanostructured with some crystal defects, such as dislocations, grain boundaries, and twins. These microstructures are advantageous in reducing the total potential barrier that the hydrogen absorption or desorption reaction must overcome, thus improving the hydrogen storage kinetics of the alloys. The dehydriding activation energies of the alloys are 122.28, 68.25, and 59.91 kJ mol−1 H2 for x = 0, 5, and 10, respectively. The catalyzed alloys begin to release hydrogen at ∼241.9 °C, which is 26.4 °C lower than the temperature required for non-catalyzed alloys. The hydrogenation enthalpies of the alloys are −81.72, −78.31, and −78.18 kJ mol−1 H2 for x = 0, 5, and 10, respectively. Therefore, the addition of a MoS2 catalyst significantly improves the hydrogen storage kinetics of Mg-based alloys.

Graphical abstract: Improvement in the hydrogen storage performance of the as-milled Sm–Mg alloys using MoS2 nano-particle catalysts

Article information

Article type
Paper
Submitted
12 Sep 2017
Accepted
22 Nov 2017
First published
19 Dec 2017
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2017,7, 56365-56374

Improvement in the hydrogen storage performance of the as-milled Sm–Mg alloys using MoS2 nano-particle catalysts

Z. Yuan, W. Zhang, P. Zhang, Y. Zhang, W. Bu, S. Guo and D. Zhao, RSC Adv., 2017, 7, 56365 DOI: 10.1039/C7RA10160K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements