Issue 44, 2017

Deformation of the contact line around spherical particles bound at anisotropic fluid interfaces

Abstract

When a particle adsorbs at a liquid interface, the 3-phase contact line geometry depends on the shape of the particle and of the liquid interface. The shape of the contact line is the key to controlling capillary forces among particles, and is therefore a useful means to direct assembly of interfacial particles. We measured the shape of the contact line around millimeter-sized PDMS-coated glass spheres at water/air interfaces with anisotropic shapes. We studied the advancing and receding conditions separately. We focused on interfaces with a cylindrical shape, where the predominant deformation of the meniscus and the contact line both have quadrupolar cos(2ϕ) symmetry. We related the measured magnitude of the quadrupolar deformation to the applied vertical force on the sphere and the interface's deviatoric curvature, D0. For modest curvature (D0 < 0.1 × sphere radius), our results agree with the theoretical prediction for free particles. At higher curvature, the measurements exceed the theory. The theory appears to apply even when there is contact-angle hysteresis, as long as the measured contact angle is used rather than the equilibrium (Young-Dupré) angle. The magnitude of the quadrupolar deformation depends on the applied force. Together, these results show the range of validity of the theory.

Graphical abstract: Deformation of the contact line around spherical particles bound at anisotropic fluid interfaces

Supplementary files

Article information

Article type
Paper
Submitted
03 Aug 2017
Accepted
04 Oct 2017
First published
05 Oct 2017

Soft Matter, 2017,13, 8234-8239

Deformation of the contact line around spherical particles bound at anisotropic fluid interfaces

N. Şenbil and A. D. Dinsmore, Soft Matter, 2017, 13, 8234 DOI: 10.1039/C7SM01548H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements