Issue 44, 2017

Microstructures and mechanics in the colloidal film drying process

Abstract

We use Brownian Dynamics (BD) simulations and continuum models to study the microstructures and mechanics in the colloidal film drying process. Colloidal suspensions are compressed between a planar moving interface and a stationary substrate. In the BD simulations, we develop a new Energy Minimization Potential-Free (EMPF) algorithm to enforce the hard-sphere potential in confined systems and to accurately measure the stress profile. The interface moves either at a constant velocity Uw or via a constant imposed normal stress Σe. Comparing the interface motions to the particle Brownian motion defines the Péclet numbers PeU = Uwa/d0 and PeΣ = Σea3/kBT, respectively, where d0 = kBT/ζ with kBT the thermal energy scale, ζ the single-particle resistance, and a the particle radius. With a constant interface velocity, thermodynamics drives the suspension behavior when PeU ≪ 1, and homogeneous crystallization appears when the gap spacing between the two boundaries pushes the volume fraction above the equilibrium phase boundary. In contrast, when PeU ≫ 1, local epitaxial crystal growth appears adjacent to the moving interface even for large gap sizes. Interestingly, the most amorphous film microstructures are found at moderate PeU. The film stress profile develops sharp transitions and becomes step-like with growing Péclet number. With a constant imposed stress, the interface stops moving as the suspension pressure increases and the microstructural and mechanical behaviors are similar to the constant velocity case. Comparison with the simulations shows that the model accurately captures the stress on the moving interface, and quantitatively resolves the local stress and volume fraction distributions for low to moderate Péclet numbers. This work demonstrates the critical role of interface motion on the film microstructures and stresses.

Graphical abstract: Microstructures and mechanics in the colloidal film drying process

Supplementary files

Article information

Article type
Paper
Submitted
07 Aug 2017
Accepted
13 Oct 2017
First published
16 Oct 2017

Soft Matter, 2017,13, 8156-8170

Microstructures and mechanics in the colloidal film drying process

M. Wang and J. F. Brady, Soft Matter, 2017, 13, 8156 DOI: 10.1039/C7SM01585B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements