Issue 36, 2017

Iron oxide@mesoporous carbon architectures derived from an Fe(ii)-based metal organic framework for highly sensitive oxytetracycline determination

Abstract

A series of nanocomposites comprised of iron oxide and mesoporous carbon (denoted as Fe3O4@mC) were derived from an Fe(II)-based metal–organic framework (525-MOF) by calcining at different temperatures. The advantages of chemical functionality, strong bioaffinity, and high stability of the Fe3O4@mC can be combined with the high specific surface area of 525-MOF leading to the formation of Fe3O4@mC nanocomposites as a scaffold for oxytetracycline (OTC) aptamer strands. The use of Fe3O4@mC nanocomposites reveals high OTC detection efficiency. The nanocomposite calcined at 900 °C (denoted as Fe3O4@mC900) is found to be the best candidate toward high-sensitivity and high-selectivity detection of OTC because of its excellent functionality, nanostructural properties, and high electrochemical performance. Accordingly, the Fe3O4@mC900-based electrochemical aptasensor displays high sensitivity with a low detection limit of 0.027 pg mL−1 within a broad linear range of OTC concentration from 0.005 to 1.0 ng mL−1. The aptasensor also exhibits high selectivity, reproducibility, stability, regenerability, and applicability in milk samples. All of these results indicate that the Fe3O4@mC nanocomposites that originated from 525-MOF can be applied in the fields of trace and fast antibiotic determination.

Graphical abstract: Iron oxide@mesoporous carbon architectures derived from an Fe(ii)-based metal organic framework for highly sensitive oxytetracycline determination

Supplementary files

Article information

Article type
Paper
Submitted
08 May 2017
Accepted
17 Aug 2017
First published
17 Aug 2017

J. Mater. Chem. A, 2017,5, 19378-19389

Iron oxide@mesoporous carbon architectures derived from an Fe(II)-based metal organic framework for highly sensitive oxytetracycline determination

Y. Song, F. Duan, S. Zhang, J. Tian, Z. Zhang, Z. Wang, C. Liu, W. Xu and M. Du, J. Mater. Chem. A, 2017, 5, 19378 DOI: 10.1039/C7TA03959J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements