Issue 39, 2017

Understanding the breathing phenomena in nano-ZIF-7 upon gas adsorption

Abstract

Synchrotron X-ray diffraction and inelastic neutron scattering measurements have been applied to evaluate the breathing phenomena in small nanocrystals of ZIF-7 upon gas adsorption. The experimental results show that an extended solvent exchange process with methanol is crucial to get a solvent-free narrow pore structure. Under these conditions, nano-ZIF-7 is indeed able to adsorb N2 with a total BET surface area of around 380 m2 g−1, in close agreement with theoretical predictions. The breathing phenomenon upon nitrogen adsorption is accompanied by a phase-to-phase transition, from a narrow-pore (phase II) to a large-pore (phase I) structure and a suppression of the cooperative deformation of the framework involving mainly the flapping motion of the benzimidazolate (bIm) ligand with the 4- and 6-membered rings. Whereas nitrogen requires temperature and pressure conditions close to condensation (close to 1 bar and 77 K) to induce the breathing in ZIF-7, CO2 can do it under milder conditions (at room temperature and low relative pressures). These results reflect that the nature of the adsorptive probe and the gas–framework interactions, rather than the molecular diameter and/or shape, play a crucial role in defining the pressure and temperature conditions required to induce the breathing. The presence of two different cavities in ZIF-7 as suggested by theoretical predictions, one with a window diameter of below 0.4 nm (cavity A) and the other with a pore size of around 0.6 nm (cavity B), has been confirmed experimentally using immersion calorimetry.

Graphical abstract: Understanding the breathing phenomena in nano-ZIF-7 upon gas adsorption

Supplementary files

Article information

Article type
Paper
Submitted
07 Jul 2017
Accepted
11 Sep 2017
First published
11 Sep 2017

J. Mater. Chem. A, 2017,5, 20938-20946

Understanding the breathing phenomena in nano-ZIF-7 upon gas adsorption

C. Cuadrado-Collados, J. Fernández-Català, F. Fauth, Y. Q. Cheng, L. L. Daemen, A. J. Ramirez-Cuesta and J. Silvestre-Albero, J. Mater. Chem. A, 2017, 5, 20938 DOI: 10.1039/C7TA05922A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements