Issue 42, 2017

Electronic structure and photocatalytic band offset of few-layer GeP2

Abstract

Based on a sophisticated crystal structure prediction method, we propose two-dimensional (2D) GeP2 in the tetragonal (T) phase never observed for other group IV–V compounds. The bulk of 2D GeP2 is more stable than both 2D orthogonal (O) and three-dimensional pyrite (P) phases that have been experimentally observed for group IV–V compounds. According to our calculations of phonon dispersion relations and elastic constants, as well as ab initio molecular dynamics simulation, monolayers of both the T and O phases (penta-GeP2 and O-GeP2, respectively) are dynamically, mechanically, and thermally stable. In addition, our HSE06 calculation shows that these monolayers are semiconductors with band gaps in the visible region. Among the various stacking patterns of their bilayers, specific ones are identified to be most stable, which are still semiconductors with band gaps redshifted in the visible region. Different from the case of their bulk, few-layers of O-GeP2 are more stable than those of penta-GeP2 up to a pentalayer. Furthermore, band offset with respect to the Fermi levels of appropriate half-reactions shows that both n-type few-layer penta-GeP2 and O-GeP2 can be useful in photocatalyzed CO2 splitting to CO as well as in photocatalyzed water splitting, specifically under acidic conditions.

Graphical abstract: Electronic structure and photocatalytic band offset of few-layer GeP2

Supplementary files

Article information

Article type
Paper
Submitted
11 Aug 2017
Accepted
24 Sep 2017
First published
25 Sep 2017

J. Mater. Chem. A, 2017,5, 22146-22155

Electronic structure and photocatalytic band offset of few-layer GeP2

F. Shojaei, J. R. Hahn and H. S. Kang, J. Mater. Chem. A, 2017, 5, 22146 DOI: 10.1039/C7TA07107H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements