Issue 43, 2017

Redox-active cathode interphases in solid-state batteries

Abstract

All-solid-state batteries are expected to provide a next-generation solution for energy storage. Employing fast conducting lithium thiophosphates as a replacement for liquid electrolytes in conventional lithium ion batteries has shown great promise, however, capacity fading and the underlying interfacial side reactions of thiophosphates and cathode active materials are not yet understood well. In this study, we charge solid-state batteries to different cut-off potentials and find the formation of a redox-active resistive layer in the solid electrolyte, which impedes the conductivity depending on the state-of-charge of the battery. Using electrochemical impedance spectroscopy as well as depth profiling with X-ray photoelectron spectroscopy we find a thick passivation layer at the current collector and decomposition products within the cathode composite. In addition, an in situ electrochemical experiment during X-ray photoelectron spectroscopy shows that the solid electrolyte is redox active at the cathode/solid electrolyte interface in solid-state batteries. This work highlights the importance of protecting interface layers at the current collector, and the influence of the resulting electric potential drop, as well as provides insight into the redox chemistry of lithium conducting thiophosphates.

Graphical abstract: Redox-active cathode interphases in solid-state batteries

Supplementary files

Article information

Article type
Paper
Submitted
30 Aug 2017
Accepted
05 Oct 2017
First published
05 Oct 2017

J. Mater. Chem. A, 2017,5, 22750-22760

Redox-active cathode interphases in solid-state batteries

R. Koerver, F. Walther, I. Aygün, J. Sann, C. Dietrich, W. G. Zeier and J. Janek, J. Mater. Chem. A, 2017, 5, 22750 DOI: 10.1039/C7TA07641J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements