Issue 43, 2017

Cross-linked polymers with fluorinated bridges for efficient gene delivery

Abstract

A new strategy for the construction of fluorinated cationic polymers for gene delivery was introduced. The fluorinated polymers were synthesized by crosslinking low molecular weight PEI with diols containing various lengths of perfluoroalkyl chains via epoxide ring-opening polymerization. Such a study presents the first example of polymeric gene vectors with fluorination on the polymer backbone but not on the side chains. These materials showed good DNA condensation and protection ability and could condense DNA into nanoparticles with appropriate sizes and zeta-potentials. The fluorine atoms might strengthen the interaction toward DNA, leading to more stable polyplexes. In vitro transfection results showed that the fluorinated polymers could mediate efficient gene delivery toward both 2D and 3D cell cultures at low weight ratios, and their transfection efficiency was higher than that of PEI 25 kDa and their non-fluorinated counterparts. Several assays including DLS, TEM, luciferase reporter gene transfection and flow cytometry revealed that fluorination improved the serum resistance of these polymeric vectors, and more fluorine atoms might lead to better serum tolerance. These fluorinated materials exhibited very low cytotoxicity at transfection dosage. A cellular uptake study with uptake inhibitors indicated that macro-pinocytosis and microtubule-mediated endocytosis were the major endocytosis pathways for these polyplexes.

Graphical abstract: Cross-linked polymers with fluorinated bridges for efficient gene delivery

Supplementary files

Article information

Article type
Paper
Submitted
12 Aug 2017
Accepted
09 Oct 2017
First published
09 Oct 2017

J. Mater. Chem. B, 2017,5, 8542-8553

Cross-linked polymers with fluorinated bridges for efficient gene delivery

Y. Xiao, J. Zhang, Y. Liu, Z. Huang, B. Wang, Y. Zhang and X. Yu, J. Mater. Chem. B, 2017, 5, 8542 DOI: 10.1039/C7TB02158E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements