Issue 28, 2017

Enhanced physical properties of pulsed laser deposited NiO films via annealing and lithium doping for improving perovskite solar cell efficiency

Abstract

Pulsed laser deposition (PLD) is a powerful growth technique for thin films, where in situ doping and post-thermal annealing are the most effective ways to tune the crystalline and physical properties of the deposited films. This paper demonstrates that the crystallinity, transparency, and electrical properties of NiO films are well controlled by PLD, which determines the photovoltaic performance of CH3NH3PbI3−xClx-based perovskite solar cells with NiO films as the hole transport layers (HTLs). After post-annealing, the NiO films exhibit enhanced in-plane crystal orientation, high transmittance, and uniform surface morphology, and, accordingly, the power conversion efficiency (PCE) of the perovskite solar cell improves from 5.38% to 12.59%. Moreover, by doping the ablated target with lithium (Li), PLD can produce doped NiO:Li films with significantly enhanced electrical conductivity, which further improves the perovskite cell PCE from 12.59% to 15.51%. These results highlight the importance of optimizing the transporting layer properties toward high-performance inverted perovskite planar solar cells.

Graphical abstract: Enhanced physical properties of pulsed laser deposited NiO films via annealing and lithium doping for improving perovskite solar cell efficiency

Supplementary files

Article information

Article type
Paper
Submitted
23 Mar 2017
Accepted
28 Jun 2017
First published
28 Jun 2017

J. Mater. Chem. C, 2017,5, 7084-7094

Enhanced physical properties of pulsed laser deposited NiO films via annealing and lithium doping for improving perovskite solar cell efficiency

Z. Qiu, H. Gong, G. Zheng, S. Yuan, H. Zhang, X. Zhu, H. Zhou and B. Cao, J. Mater. Chem. C, 2017, 5, 7084 DOI: 10.1039/C7TC01224A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements