Issue 38, 2017

A highly sensitive turn-on ratiometric luminescent probe based on postsynthetic modification of Tb3+@Cu-MOF for H2S detection

Abstract

The fabrication of luminescent materials with lanthanide cations encapsulated within MOF pores is currently of interest because luminescent materials are used in numerous applications. In this study, a distinctive strategy via postsynthetic modification (PSM) of a novel metal–organic framework [Cu(HCPOC)2]n (Cu1) (H2CPOC = 5-(4′-carboxyphenoxy)nicotinic acid) and terbium ions (Tb3+) for sensing hydrogen sulfide (H2S) is reported. The obtained composite Tb3+@Cu1 emits a weak typical Tb3+ ion emission and strong ligand-centred emission. Interestingly, H2S, as a strong electron donor, can strongly enhance the luminescence of Tb3+ through its superior affinity for Cu2+ ions. The composite Tb3+@Cu1 was designed as a luminescent turn-on ratiometric probe for H2S detection, showing high sensitivity and selectivity. The detection limit of Tb3+@Cu1 (1.20 μM) is far below that of Cu1 (13.25 μM). Moreover, a similar ligand, 5-(4′-carboxyphenyl)nicotinic acid (H2CPC), was used to synthesize a fascinating structure, [Cu5(CPC)2(HCPC)2(OH)4]n (Cu2), which was quite similar to that of the famous semiconductor MoS2, with the advantageous support of an organic linker between layers, and it showed a band gap of 2.45 eV.

Graphical abstract: A highly sensitive turn-on ratiometric luminescent probe based on postsynthetic modification of Tb3+@Cu-MOF for H2S detection

Supplementary files

Article information

Article type
Paper
Submitted
02 Jun 2017
Accepted
04 Sep 2017
First published
04 Sep 2017

J. Mater. Chem. C, 2017,5, 9943-9951

A highly sensitive turn-on ratiometric luminescent probe based on postsynthetic modification of Tb3+@Cu-MOF for H2S detection

X. Zheng, R. Fan, Y. Song, A. Wang, K. Xing, X. Du, P. Wang and Y. Yang, J. Mater. Chem. C, 2017, 5, 9943 DOI: 10.1039/C7TC02430D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements