Issue 22, 2018

High proton conduction behavior in 12-connected 3D porous lanthanide–organic frameworks and their polymer composites

Abstract

Two novel lanthanide–organic frameworks, {[Ln3(bpydb)3(HCOO)(OH)2(DMF)]·3DMF·xH2O}n (Ln = Eu3+ (1) and x = 2; Tb3+ (2) and x = 1; bpydbH2 is 4,4′-(4,4′-bipyridine-2,6-diyl) dibenzoic acid; DMF denotes N,N′-dimethylformamide), have been synthesized and structurally characterized. Topological analysis reveals that 1 and 2 are 12-connected frameworks with an fcu topology, which are based on rod-shaped {Ln6} as 12-connected nodes. AC impedance analysis shows that the proton conductivity of 1 and 2 reaches up to 1.7 × 10−4 S cm−1 at 325 K and 1.1 × 10−4 S cm−1 at 334 K, respectively, under 98% RH. Furthermore, the polymer composite membranes of poly(vinyl alcohol) (PVA) and 1 or 2 as fillers with different mass percentages (X%, with the composite membrane denoted as 1@PVA-X or 2@PVA-X) were fabricated. The proton conductivities of both 1@PVA-10 and 2@PVA-10 are higher than those of 1 and 2 under the same conditions, which can be interpreted that the PVA polymer can provide a continuous proton transfer pathway for 1 and 2. To the best of our knowledge, it is the first composite based on Ln–MOFs and a polymer as proton exchange membranes. This research may contribute to the further development of Ln–MOFs in the field of proton exchange membranes in fuel cells.

Graphical abstract: High proton conduction behavior in 12-connected 3D porous lanthanide–organic frameworks and their polymer composites

Supplementary files

Article information

Article type
Paper
Submitted
27 Mar 2018
Accepted
26 Apr 2018
First published
26 Apr 2018

CrystEngComm, 2018,20, 3066-3073

High proton conduction behavior in 12-connected 3D porous lanthanide–organic frameworks and their polymer composites

S. Yang, P. Sun, Y. Yuan, C. Zhang and Q. Wang, CrystEngComm, 2018, 20, 3066 DOI: 10.1039/C8CE00476E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements