Issue 7, 2019

Graphene–hBN non-van der Waals vertical heterostructures for four- electron oxygen reduction reaction

Abstract

A novel vertical non-van der Waals (non-vdW) heterostructure of graphene and hexagonal boron nitride (G/hBN) is realized and its application in direct four-electron oxygen reduction reaction (ORR) in alkaline medium is established. The G/hBN differs from previously demonstrated vdW heterostructures, where it has a chemical bridging between graphene and hBN allowing a direct charge transfer – resulting in high ORR activity. The ORR efficacy of G/hBN is compared with that of graphene–hBN vdW structure and individual layers of graphene and hBN along with that of benchmark platinum/carbon (Pt/C). The ORR activity of G/hBN is found to be on par with Pt/C in terms of current density but with much higher electrochemical stability and methanol tolerance. The onset potential of the G/hBN is found to be improved from 780 mV at a glassy carbon electrode to 930 mV and 940 mV in gold and platinum electrodes, respectively, indicating its substrate-dependent catalytic activity. This opens possibilities of new benchmark catalysts of metals capped with G/hBN atomic layers, where the underneath metal is protected while keeping the activity similar to that of pristine metal. Density functional theory-based calculations are found to be supporting the observed augmented ORR performance of G/hBN.

Graphical abstract: Graphene–hBN non-van der Waals vertical heterostructures for four- electron oxygen reduction reaction

Supplementary files

Article information

Article type
Paper
Submitted
02 Oct 2018
Accepted
14 Jan 2019
First published
18 Jan 2019

Phys. Chem. Chem. Phys., 2019,21, 3942-3953

Graphene–hBN non-van der Waals vertical heterostructures for four- electron oxygen reduction reaction

P. K. Rastogi, K. R. Sahoo, P. Thakur, R. Sharma, S. Bawari, R. Podila and T. N. Narayanan, Phys. Chem. Chem. Phys., 2019, 21, 3942 DOI: 10.1039/C8CP06155F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements