Issue 5, 2019

Microhydration of protonated 5-hydroxyindole revealed by infrared spectroscopy

Abstract

Controlled microsolvation of protonated aromatic biomolecules with water is fundamental to understand proton transfer reactions in aqueous environments. We measured infrared photodissociation (IRPD) spectra of mass-selected microhydrates of protonated 5-hydroxyindole (5HIH+–Wn, W = H2O, n = 1–3) in the OH and NH stretch ranges (2700–3800 cm−1), which are sensitive to the spectroscopic characteristics of interior solvation, water network formation, and proton transfer to solvent. Analysis of the IRPD spectra by dispersion-corrected density functional theory calculations (B3LYP-D3/aug-cc-pVTZ) reveals the coexistence of C3- and C4-protonated carbenium ions, 5HIH+(C3) and 5HIH+(C4), as well as the O-protonated oxonium ion, 5HIH+(O). Monohydrated 5HIH+–W clusters are formed by hydrogen-bonding (H-bonding) of the first water to the most acidic functional group, namely, the NH group in the case of 5HIH+(C3), the OH group for 5HIH+(C4), and the OH2 group for 5HIH+(O). The latter benefits from its twofold degeneracy and the outstandingly high binding energy of D0 ∼ 100 kJ mol−1. Larger 5HIH+–W2/3 clusters preferably grow (i) by H-bonding of the second water to the remaining vacant functional group and and/or (ii) by formation of W2 water chains at the respective most acidic functional group. Our IRPD spectra of 5HIH+–Wn do not indicate any proton transfer to the solvent up to n = 3, in line with the proton affinities of 5HI and Wn. Comparison of 5HIH+–Wn to neutral 5HI–W and cationic 5HI+–Wn clusters elucidates the impact of different charge states on the topology of the initial solvation shell. Furthermore, to access the influence of the size of the arene ion and a second functional group, we draw a comparison to microhydration of protonated phenol.

Graphical abstract: Microhydration of protonated 5-hydroxyindole revealed by infrared spectroscopy

Supplementary files

Article information

Article type
Paper
Submitted
08 Nov 2018
Accepted
07 Jan 2019
First published
08 Jan 2019
This article is Open Access
Creative Commons BY-NC license

Phys. Chem. Chem. Phys., 2019,21, 2706-2718

Microhydration of protonated 5-hydroxyindole revealed by infrared spectroscopy

J. Klyne and O. Dopfer, Phys. Chem. Chem. Phys., 2019, 21, 2706 DOI: 10.1039/C8CP06950F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements