Issue 14, 2019

Implementing the mechanical force into the conceptual DFT framework: understanding and predicting molecular mechanochemical properties

Abstract

In molecular mechanochemistry, the chemical properties of a reactant system are modified through the absorption of mechanical energy at the single molecular level, as opposed to thermochemistry (heat), electrochemistry (electrical current) and photochemistry (light). In this proof-of-concept paper, we present a theoretical approach to rationalize and predict the change in chemical properties and concepts when an external stretching force, Fext, is applied to a chemical bond. By considering perturbations to the total molecular energy due to Fext, a series of mechanochemical response indices are obtained within the framework of conceptual density functional theory (DFT). Trends in these indices monitoring the change in hardness and electrophilicity among others, were rationalized for a number of diatomic molecules in terms of the ground-state geometry and the frontier molecular orbitals of the molecule. Finally, we present a set of rules that can be easily adopted for polyatomic molecules to predict the changing chemical reactivity of single molecules when subjected to an external force.

Graphical abstract: Implementing the mechanical force into the conceptual DFT framework: understanding and predicting molecular mechanochemical properties

Article information

Article type
Paper
Submitted
29 Nov 2018
Accepted
11 Mar 2019
First published
20 Mar 2019

Phys. Chem. Chem. Phys., 2019,21, 7378-7388

Implementing the mechanical force into the conceptual DFT framework: understanding and predicting molecular mechanochemical properties

T. Bettens, M. Alonso, P. Geerlings and F. De Proft, Phys. Chem. Chem. Phys., 2019, 21, 7378 DOI: 10.1039/C8CP07349J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements