Issue 7, 2019

Two-dimensional-related catalytic materials for solar-driven conversion of COx into valuable chemical feedstocks

Abstract

The discovery of improved chemical processes for CO and CO2 hydrogenation to valuable hydrocarbon fuels and alcohols is of paramount importance for the chemical industry. Such technologies have the potential to reduce anthropogenic CO2 emissions by adding value to a waste stream, whilst also reducing our consumption of fossil fuels. Current thermal catalytic technologies available for CO and CO2 hydrogenation are demanding in terms of energy input. Various alternative technologies are now being developed for COx hydrogenation, with solar-driven processes over two-dimensional (2D) and 2D-related composite materials being particularly attractive due to the abundance of solar energy on Earth and also the high selectivity of defect-engineered 2D materials towards specific valuable products under very mild reaction conditions. This review showcases recent advances in the solar-driven COx reduction to hydrocarbons over 2D-based materials. Optimization of 2D catalyst performance demands interdisciplinary research that embraces catalyst electronic structure manipulation and morphology control, surface/interface engineering, reactor engineering and density functional theory modelling studies. Through improved understanding of the structure–performance relationships in 2D-related catalysts which is achievable through the application of modern in situ characterization techniques, practical photo/photothermal/photoelectrochemical technologies for CO and CO2 reduction to high-valuable products such as olefins could be realized in the not-too-distant future.

Graphical abstract: Two-dimensional-related catalytic materials for solar-driven conversion of COx into valuable chemical feedstocks

Article information

Article type
Review Article
Submitted
29 Jul 2018
First published
24 Oct 2018

Chem. Soc. Rev., 2019,48, 1972-2010

Two-dimensional-related catalytic materials for solar-driven conversion of COx into valuable chemical feedstocks

Y. Zhao, G. I. N. Waterhouse, G. Chen, X. Xiong, L. Wu, C. Tung and T. Zhang, Chem. Soc. Rev., 2019, 48, 1972 DOI: 10.1039/C8CS00607E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements