Issue 28, 2018

Compositional and structural insights into the nature of the H-cluster precursor on HydF

Abstract

Assembly of an active [FeFe]-hydrogenase requires dedicated maturation enzymes that generate the active-site H-cluster: the radical SAM enzymes HydE and HydG synthesize the unusual non-protein ligands – carbon monoxide, cyanide, and dithiomethylamine – while the GTPase HydF serves as a scaffold for assembly of the 2Fe subcluster containing these ligands. In the current study, enzymatically cluster-loaded HydF ([2Fe]F) is produced by co-expression with HydE and HydG in an Escherichia coli host followed by isolation and examination by FTIR and EPR spectroscopy. FTIR reveals the presence of well-defined terminal CO and CN ligands; however, unlike in the [FeFe]-hydrogenase, no bridging CO is observed. Exposure of this loaded HydF to exogenous CO or H2 produces no significant changes to the FTIR spectrum, indicating that, unlike in the [FeFe]-hydrogenase, the 2Fe cluster in loaded HydF is coordinatively saturated and relatively unreactive. EPR spectroscopy reveals the presence of both [4Fe–4S] and [2Fe–2S] clusters on this loaded HydF, but provides no direct evidence for these being linked to the [2Fe]F. Using the chemical reactivity and FTIR data, a large collection of computational models were evaluated. Their scaled quantum chemical vibrational spectra allowed us to score various [2Fe]F structures in terms of their ability to reproduce the diatomic stretching frequencies observed in the FTIR experimental spectra. Collectively, the results provide new insights that support the presence of a diamagnetic, but spin-polarized FeI–FeI oxidation state for the [2Fe]F precursor cluster that is coordinated by 4 CO and 2 CN ligands, and bridged to an adjacent iron–sulfur cluster through one of the CN ligands.

Graphical abstract: Compositional and structural insights into the nature of the H-cluster precursor on HydF

Supplementary files

Article information

Article type
Paper
Submitted
25 Apr 2018
Accepted
19 Jun 2018
First published
19 Jun 2018

Dalton Trans., 2018,47, 9521-9535

Author version available

Compositional and structural insights into the nature of the H-cluster precursor on HydF

A. G. Scott, R. K. Szilagyi, D. W. Mulder, M. W. Ratzloff, A. S. Byer, P. W. King, W. E. Broderick, E. M. Shepard and J. B. Broderick, Dalton Trans., 2018, 47, 9521 DOI: 10.1039/C8DT01654B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements