Issue 5, 2018

Boosting the solar water oxidation performance of a BiVO4 photoanode by crystallographic orientation control

Abstract

Materials with low crystal symmetry often exhibit anisotropic properties, allowing the tuning of their physical and chemical properties via crystallographic orientation and exposed facet control. Herein, for the first time, we have demonstrated that pristine BiVO4 with a preferred [001] growth orientation and exposed (001) facets exhibits excellent intrinsic charge transport properties and surface reactivity. Using preferentially [001]-oriented BiVO4 (p-BVO) as a photoanode for photoelectrochemical water splitting, an impressive photocurrent density at 1.23 V vs. the reversible hydrogen electrode (RHE) is achieved, which is approximately 16 times higher than that exhibited by a photoanode based on randomly oriented BiVO4. Importantly, when the surface of p-BVO is further roughened and decorated with an oxygen evolution electrocatalyst, photocurrent densities of ∼3.5 and ∼6.1 mA cm−2 are achieved at 0.6 and 1.23 VRHE, respectively; the latter value corresponds to ∼82% of the theoretically achievable photocurrent density for BiVO4 under 1 sun illumination. Our results demonstrate the effectiveness of crystal orientation and exposed facet control in optimizing materials for solar water-splitting applications.

Graphical abstract: Boosting the solar water oxidation performance of a BiVO4 photoanode by crystallographic orientation control

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
13 Jan 2018
Accepted
15 Mar 2018
First published
15 Mar 2018

Energy Environ. Sci., 2018,11, 1299-1306

Boosting the solar water oxidation performance of a BiVO4 photoanode by crystallographic orientation control

H. S. Han, S. Shin, D. H. Kim, I. J. Park, J. S. Kim, P. Huang, J. Lee, I. S. Cho and X. Zheng, Energy Environ. Sci., 2018, 11, 1299 DOI: 10.1039/C8EE00125A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements