Issue 10, 2018

Asymmetric polyoxometalate electrolytes for advanced redox flow batteries

Abstract

Electrochemical storage of energy is a necessary asset for the integration of intermittent renewable energy sources such as wind and solar power into a complete energy scenario. Redox flow batteries (RFBs) are the only type of battery in which the energy content and the power output can be scaled independently, offering flexibility for applications such as load levelling. However, the prevailing technology, the all Vanadium system, comprises low energy and low power densities. In this study we investigate two polyoxometalates (POMs), [SiW12O40]4− and [PV14O42]9−, as nano-sized electron shuttles. We show that these POMs exhibit fast redox kinetics (electron transfer constant k0 ≈ 10−2 cm s−1 for [SiW12O40]4−), thereby enabling high power densities; in addition, they feature multi-electron transfer, realizing a high capacity per molecule; they do not cross cation exchange membranes, eliminating self-discharge through the separator; and they are chemically and electrochemically stable as shown by in situ NMR. In flow battery studies the theoretical capacity (10.7 A h L−1) could be achieved under operating conditions. The cell was cycled for 14 days with current densities in the range of 30 to 60 mA cm−2 (155 cycles). The Coulombic efficiency was 94% during cycling. Very small losses occurred due to residual oxygen in the system. The voltage efficiency (∼65% at 30 mA cm−2) was mainly affected by ohmic rather than kinetic losses. Pathways for further improvement are discussed.

Graphical abstract: Asymmetric polyoxometalate electrolytes for advanced redox flow batteries

Supplementary files

Article information

Article type
Paper
Submitted
07 Feb 2018
Accepted
24 Jul 2018
First published
28 Jul 2018

Energy Environ. Sci., 2018,11, 3010-3018

Asymmetric polyoxometalate electrolytes for advanced redox flow batteries

J. Friedl, M. V. Holland-Cunz, F. Cording, F. L. Pfanschilling, C. Wills, W. McFarlane, B. Schricker, R. Fleck, H. Wolfschmidt and U. Stimming, Energy Environ. Sci., 2018, 11, 3010 DOI: 10.1039/C8EE00422F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements