Issue 12, 2018

The role of the hydrogen evolution reaction in the solid–electrolyte interphase formation mechanism for “Water-in-Salt” electrolytes

Abstract

Aqueous Li-ion batteries have long been envisioned as safe and green energy storage technology, but have never been commercially realized owing to the limited electrochemical stability window of water, which drastically hampers their energy density. Recently, Water-in-Salt electrolytes (WiSEs) in which a large amount of organic salt is dissolved into water were proposed to allow for assembling 3 V Li-ion batteries. Hereby, our attention focused on the fate of water at the electrochemical interface under negative polarization and the potential reactivity of TFSI anions with products originating from the water reduction. Hence, combining analysis of bulk electrolytes with electrochemical measurements on model electrodes and operando characterization, we were able to demonstrate that hydroxides generated during the hydrogen evolution reaction can chemically react with TFSI and catalyze the formation of a fluorinated solid–electrolyte interphase (SEI) that prevents further water reduction. Mastering this new SEI formation path with the chemical degradation of TFSI anions mediated by the electrochemical reduction of water can therefore open new avenues for the future development of not only WiSEs but also Li batteries functioning in organic electrolytes.

Graphical abstract: The role of the hydrogen evolution reaction in the solid–electrolyte interphase formation mechanism for “Water-in-Salt” electrolytes

Supplementary files

Article information

Article type
Paper
Submitted
22 Aug 2018
Accepted
15 Oct 2018
First published
15 Oct 2018

Energy Environ. Sci., 2018,11, 3491-3499

The role of the hydrogen evolution reaction in the solid–electrolyte interphase formation mechanism for “Water-in-Salt” electrolytes

N. Dubouis, P. Lemaire, B. Mirvaux, E. Salager, M. Deschamps and A. Grimaud, Energy Environ. Sci., 2018, 11, 3491 DOI: 10.1039/C8EE02456A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements