Issue 12, 2018

Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass

Abstract

As an emerging generation of green solvents, deep eutectic solvents (DESs) are promising for the pretreatment of lignocellulose and the production of biochemicals. However, not all DESs are effective for the cleavage of lignin–carbohydrate complexes (LCCs) in lignocellulose and the fractionation of lignin. In this study, we analyzed the nature of complex molecular interactions between choline chloride (ChCl) and glycerol in ChCl/glycerol (1 : 2) DES using density functional theory and the Kamlet–Taft solvatochromic method. The ChCl–glycerol DES exhibited weak competing interactions towards the linkages in the LCC network because the intramolecular hydrogen bonds (H-bonds) in ChCl–glycerol were constrained by mutually anionic H-bonds ([Cl(glycerol)]) and cationic H-bonds ([Ch(glycerol)]+). Furthermore, because of the absence of active protons and acidic sites, the DES was unable to cleave ether bond linkages in the LCCs. Accordingly, we designed a three-constituent DES (3c-DES) by coordinating AlCl3·6H2O in ChCl/glycerol DES based on an acidic multisite coordination theory. The competition of anionic H-bonds and unidentate aluminum ligands was synchronized to form supramolecular complexes, allowing the multisite bridging ligands to cleave both the H-bonds and ether bonds in LCCs. Consequently, the lignin fractionation efficiency was significantly improved from 3.61% to 95.46%, and the lignin purity reached 94 ± 0.45%.

Graphical abstract: Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass

Supplementary files

Article information

Article type
Paper
Submitted
21 Mar 2018
Accepted
22 Apr 2018
First published
24 Apr 2018

Green Chem., 2018,20, 2711-2721

Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass

Q. Xia, Y. Liu, J. Meng, W. Cheng, W. Chen, S. Liu, Y. Liu, J. Li and H. Yu, Green Chem., 2018, 20, 2711 DOI: 10.1039/C8GC00900G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements