Issue 23, 2018

Extraction of electrokinetically separated analytes with on-demand encapsulation

Abstract

Microchip electrokinetic methods are capable of increasing the sensitivity of molecular assays by enriching and purifying target analytes. However, their use is currently limited to assays that can be performed under a high external electric field, as spatial separation and focusing is lost when the electric field is removed. We present a novel method that uses two-phase encapsulation to overcome this limitation. The method uses passive filling and pinning of an oil phase in hydrophobic channels to encapsulate electrokinetically separated and focused analytes with a brief pressure pulse. The resulting encapsulated sample droplet maintains its concentration over long periods of time without requiring an electric field and can be manipulated for further analysis, either on- or off-chip. We demonstrate the method by encapsulating DNA oligonucleotides in a 240 pL aqueous segment after isotachophoresis (ITP) focusing, and show that the concentration remains at 60% of the initial value for tens of minutes, a 22-fold increase over free diffusion after 20 minutes. Furthermore, we demonstrate manipulation of a single droplet by selectively encapsulating amplicon after ITP purification from a polymerase chain reaction (PCR) mix, and performing parallel off-chip detection reactions using the droplet. We provide geometrical design guidelines for devices implementing the encapsulation method, and show how the method can be scaled to multiple analyte zones.

Graphical abstract: Extraction of electrokinetically separated analytes with on-demand encapsulation

Supplementary files

Article information

Article type
Paper
Submitted
28 Aug 2018
Accepted
19 Oct 2018
First published
25 Oct 2018

Lab Chip, 2018,18, 3588-3597

Extraction of electrokinetically separated analytes with on-demand encapsulation

X. F. van Kooten, M. Bercovici and G. V. Kaigala, Lab Chip, 2018, 18, 3588 DOI: 10.1039/C8LC00912K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements