Issue 36, 2018

Efficient and reliable surface charge transfer doping of black phosphorus via atomic layer deposited MgO toward high performance complementary circuits

Abstract

Black phosphorus (BP), a fast emerging 2D material, has shown great potential in future electronics and optoelectronics owing to its outstanding properties including sizable band gap and ambipolar transport characteristics. However, its hole conduction dominance, featured by a much larger hole mobility and the corresponding on-current than that of the electrons, renders the reliable modulation of its carrier type and density a key challenge, thereby hindering its application to complementary electronics. Here, we demonstrate an efficient and reliable n-type doping for BP transistors via surface functionalization by atomic layer deposited magnesium oxide (MgO) with favorable controllability. By optimizing the MgO thickness, an electron mobility of up to 95.5 cm2 V−1 s−1 is reached with a simultaneous significant suppression of hole conduction. Subsequently, a high-performance complementary logic inverter is demonstrated within a single BP flake, which operates well with a supply voltage as low as <0.5 V, outperforming reported BP inverters in terms of logic level match, power consumption and process feasibility. Our findings suggest that surface charge transfer doping via MgO can be used as a promising technique towards high performance BP-based functional nanoelectronics.

Graphical abstract: Efficient and reliable surface charge transfer doping of black phosphorus via atomic layer deposited MgO toward high performance complementary circuits

Supplementary files

Article information

Article type
Communication
Submitted
31 May 2018
Accepted
24 Aug 2018
First published
28 Aug 2018

Nanoscale, 2018,10, 17007-17014

Efficient and reliable surface charge transfer doping of black phosphorus via atomic layer deposited MgO toward high performance complementary circuits

W. Liao, L. Wang, L. Chen, W. Wei, Z. Zeng, X. Feng, L. Huang, W. C. Tan, X. Huang, K. W. Ang and C. Zhu, Nanoscale, 2018, 10, 17007 DOI: 10.1039/C8NR04420A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements