Issue 38, 2018

A novel sPEEK nanocomposite membrane with well-controlled sPOSS aggregation in tunable nanochannels for fast proton conduction

Abstract

To greatly increase the proton conductivity of a sPEEK nanocomposite membrane without water swelling problems, sulfonated PEEK (sPEEK) nanocomposite membranes were prepared by regulating the nanocomposite concentration of sulfonated POSS (sPOSS). Incorporation of sPOSS into sPEEK afforded a 39% increase in proton conductivity at 80 °C/100% RH and a 70% increase in cell performance at 1.5 wt% sPOSS concentration. In particular, water swelling problems were not observed even with the attained proton conductivity, as with Nafion. The water swelling of the pristine sPEEK membrane was 18.8%; it increased to 24.4% at 5.0 wt% of sPOSS loading, which was 11.1% lower than that of Nafion. The high modulus of sPOSS and the good distribution of sPOSS also enhanced the tensile strength by 40.5% and the strain by 65.8% compared with the pristine sPEEK membrane. At more than 1.5 wt% sPOSS concentration, the conductivity and power output of the nanocomposite membranes decreased despite the increased IEC, which is highly related to aggregation of sPOSS nanoparticles in the proton conducting nanochannels and changes in the nanochannel size. The sizes of the nanochannels were measured by SAXS, and it was found that expansion of the nanochannels was enhanced at 1.5 wt% by the best distribution of sPOSS and absorption of water. The increased IEC, expanded nanochannels and distribution of sPOSS without aggregation promoted proton conduction through the nanochannels.

Graphical abstract: A novel sPEEK nanocomposite membrane with well-controlled sPOSS aggregation in tunable nanochannels for fast proton conduction

Supplementary files

Article information

Article type
Paper
Submitted
11 Jun 2018
Accepted
21 Aug 2018
First published
04 Sep 2018

Nanoscale, 2018,10, 18217-18227

A novel sPEEK nanocomposite membrane with well-controlled sPOSS aggregation in tunable nanochannels for fast proton conduction

S. Kim, S. Choi and H. Rhee, Nanoscale, 2018, 10, 18217 DOI: 10.1039/C8NR04735A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements