Issue 38, 2018

Dual functionalized natural biomass carbon dots from lychee exocarp for cancer cell targetable near-infrared fluorescence imaging and photodynamic therapy

Abstract

Photodynamic therapy (PDT) is a non-invasive phototherapy that has gained significant attention for cancer therapy. However, image-guided PDT still remains a considerable challenge. Herein, we developed a targeted, near-infrared (NIR) fluorescence imaging nanoprobe for cancer cells by preparing natural biomass carbon dots (NBCDs) from lychee exocarp, and loading transferrin and a photosensitizer on the NBCD surfaces for image-guided PDT of cancer cells and mouse tumors. Because the surfaces of cancer cells exhibit more transferrin receptors, the proposed NIR fluorescent nanoprobe can better penetrate cancer cells for cancer cell targetable fluorescence imaging. Thus, the dual-function nanoprobe made from natural biomass can be used as a specific agent for NIR fluorescence imaging and PDT. More importantly, the functional nanoprobe prepared from natural biomass emits NIR fluorescence, shows very low biological toxicity, and can minimize side effects on normal cells. After directly injecting the nanoprobes into tumor tissues, the photosensitizers on the surface of the NBCDs can produce singlet oxygen (1O2) through photodynamic reactions when irradiated with 650 nm light to kill cancer cells, thus inhibiting tumor growth in PDT-treated mice. Therefore, the functional fluorescent nanoprobe made from natural biomass has been employed as a PDT agent, and holds great promise in image-guided tumor PDT.

Graphical abstract: Dual functionalized natural biomass carbon dots from lychee exocarp for cancer cell targetable near-infrared fluorescence imaging and photodynamic therapy

Supplementary files

Article information

Article type
Communication
Submitted
21 Jun 2018
Accepted
26 Aug 2018
First published
11 Sep 2018

Nanoscale, 2018,10, 18124-18130

Dual functionalized natural biomass carbon dots from lychee exocarp for cancer cell targetable near-infrared fluorescence imaging and photodynamic therapy

M. Xue, J. Zhao, Z. Zhan, S. Zhao, C. Lan, F. Ye and H. Liang, Nanoscale, 2018, 10, 18124 DOI: 10.1039/C8NR05017A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements